

SARS-CoV-2 and COVID-19 Challenges in Containment and Management

Adeel Ajwad Butt, MBBS, MS, FACP, FIDSA Professor of Medicine (Infectious Diseases) and Healthcare Policy and Research Weill Cornell Medical College, New York and Doha Qatar

President and CEO

Innovations in Healthcare Advocacy, Research and Training (I-HART LLC), Washington DC Member WHO Advisory Group on MERS-CoV and COVID-19

For APPNA membership and all healthcare workers

April 2020

Disclosures

 I have no disclosures related to this talk

Objectives

- Brief history of coronaviruses
- Epidemiology of the current outbreak
- Myths vs. Facts
- Treatment
- Diagnosis
- Prevention

Brief history

- Betacoronaviruses frequently infect animals
- Seven species known to infect humans
 - SARS-CoV, MERS-CoV and SARS-CoV-2 can cause severe disease
 - HKU1, NL63, OC43 and 229E are associated with mild symptoms
- SARS
 - November 2002 through July 2003
 - 8,098 people worldwide became sick with severe acute respiratory syndrome
 - 774 died
 - By late July 2003, no new cases were being reported, and WHO declared the global outbreak to be over.
- MERS CoV
 - By November 2019, 8,494 cases reported
 - 858 deaths
 - Sporadic cases still occurring

SARS-CoV2

- SARS-CoV-2 is the seventh coronavirus known to infect humans
- Has a receptor binding domain (RBD) with high affinity for ACE2 receptors from humans, ferrets, cats and other species
- Genetic data irrefutably show that SARS-CoV-2 is not derived from any previously used virus backbone

SARS-CoV-2: causative organism COVID-19: disease name caused by SARS-CoV-2

How did SARS-CoV-2 enter human population?

STEP 1: Natural selection in an animal host before zoonotic transfer

- Many early cases linked to an animal market
- Similarity with bat SARS-CoV, but spike in RBD is divergent suggesting it may not bind efficiently to human ACE2
- Similarity with coronaviruses in illegally imported Malayan pangolins, with very similar RBD
- However, neither the bat betacoronaviruses nor the pangolin betacoronaviruses have polybasic cleavage sites, which suggests natural selection and not a man-made virus

STEP 2: Natural selection in humans following zoonotic transfer

- Possible that a progenitor of SARS-CoV-2 jumped into humans acquiring adaptations during early undetected human-to-human transmission
- At some point, the cluster became large enough to trigger surveillance and alarm
- Gene sequencing data suggests species jump occurred in late Nov/early Dec 2019

December 2019 – January 2020

Li et al. N Engl J Med. January 29, 2020 DOI: 10.1056/NEJMoa2001316

Situation report

As of 31 March 2020, 7:30 AM EST

802,369cases 38,990 deaths

Global situation – March 31, 2020

Global situation – March 31, 2020

China

Daily new cases – 30 March 2020

Proportion died and ICU beds/100,000 population

Data compiled March 23, 2020

Let's bust some myths first

Myth vs. Fact

• TRUE or FALSE?

COVID-19 is like the regular flu FALSE

• COVID-19 is more infectious than the regular influenza virus and more lethal. However, while more infectious than other recent novel corona viruses (SARS and MERS CoV), it is less lethal than both.

I am young and otherwise healthy. I have nothing to fear FALSE

 While COVID-19 is more likely to cause serious illness and death in the elderly and those with chronic medical conditions, there have been plenty of severe cases and even deaths in the younger population. Also, young persons play a role in transmission of infection.

Myth vs. Fact

• TRUE or FALSE?

A vaccine to cure COVID-19 is available FALSE

 Vaccine trials have started and first group of patients have been enrolled. However, a safe, effective and viable vaccine is probably at least 12-18 months away.

You can protect yourself by swallowing or gargling with bleach, taking acetic acid or steroids, or using essential oils, salt water, ethanol or other substances FALSE

 There is no truth to such remedies being touted on social media. While some of these remedies may help with general wellness, others may be quite harmful. Do not forward or share such posts on social media. Always verify your sources and rely on highly reliable sources such as CDC and WHO.

The new coronavirus was deliberately created or released by people FALSE

• There is no truth to this. In fact recent a recent paper in a major medical journal has debunked that myth.

Ordering or buying products shipped from China will make a person sick FALSE

• There is no evidence of any transmission through trade or trade goods. In fact, with the infection rates dramatically reduced in China with exponential increase in cases in many other developed countries, this does not make sense.

A face mask will protect you from COVID-19. FALSE

 For proper protection, a professional fitted N-95 mask is required. CDC and WHO do not recommend regular face masks for all persons. However, those with symptoms of a respiratory infection should wear a surgical mask to prevent spreading the infection.

How does the virus spread?

Viability of SARS-CoV-1 and SARS-CoV-2 in aerosols and on various surfaces

Viability of SARS-C	oV-2 on various surfaces
Copper:	Upto 4 hours
Cardboard:	Upto 24 hours
Plastic:	2 to 3 days
Stainless steel:	2 to 3 days
Aerosols:	Upto 3 hours

N van Doremalen et al. N Engl J Med 2020. DOI: 10.1056/NEJMc2004973

Presumed asymptomatic carrier transmission

JAMA. Published online February 21, 2020. doi:10.1001/jama.2020.2565

Risk factors for healthcare workers

Factor	Relative risk (95% CI)
Diagnosed family member	2.76 (2.02 – 3.77)
Suspected family member	1.30 (0.31 – 5.35)
Diagnosed patient	0.36(0.22 – 0.59)
Suspected patient	0.49 (0.27 – 0.89)
Suboptimal hand hygiene before patient contact	3.10 (1.43 – 6.73)
Improper PPE	2.8 2 (1.1 1 -7.18)

Ran et al. Clinical Infectious Diseases, ciaa287, https://doi.org/10.1093/cid/ciaa287

How does it present?

Clinical characteristics

Fever at admission	44%
Fever during hospitalization	89%
Cough	68%
Fatigue	38%
Sputum production	34%
Shortness of breath	19%
Myalgias/arthralgias	15%
Sore throat	14%
Headache	14%
Chills	12%
Nausea/vomiting	5%
Nasal congestion	5%
Diarrhea	4%

W Guan et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2002032

Clinical features of patients with pneumonia

Initial common symptoms	
Fever	188 (93.5)
Cough	163 (81.1)
Productive cough	83 (41.3)
Dyspnea	80 (39.8)
Fatigue or myalgia	65 (32.3)
Chest imaging, infiltrate ^a	
Unilateral	10 (5.0)
Bilateral	191 (95.0)
Comorbidities	
Hypertension	39 (19.4)
Diabetes	22 (10.9)
Cardiovascular disease	8 (4.0)
Liver disease	7 (3.5)
Nervous system disease	7 (3.5)
Chronic lung disease	5 (2.5)
Chronic kidney disease	2 (1.0)
Clinical outcomes	
ARDS	84 (41.
ICU admission	53 (26.
Death	44 (21.
ICU admission Death	53 (26. 44 (21.

JAMA Intern Med. Published online March 13, 2020. doi:10.1001/jamainternmed.2020.0994

Risk of ARDS and death

			ARDS		Death	
Pa	atient characte	ristics and findings	HR (95% CI)	P valu	ue HR (95% CI)	P value
C	linical characte	ristics				
	Age (≥65 vs <	65), y	3.26 (2.08-5.2	(1) <.001	l 6.17(3.26-1	11.67) <.001
	Gender (male	vs female)	1.47 (0.92-2.3	36) .11	0.56 (0.30-1	1.05) .07
	Highest patien <39 °C)	nt temperature (≥39 °C vs	1.77 (1.11-2.	.02 .02	0.41 (0.21-0	0.82) .01
C	omorbidities				\frown	
	Hypertension (yes vs no)		1.82 (1.13-2.9	95) .01	1.70 (0.92-3	3.14) .09
Diabetes (yes vs no)		2.34 (1.35-4.0	.002	1.58(0.80-3	3.13) .19	
Infection-re		Infection-related indices			\smile	
		hs-CRP, mg/L (>5 vs ≤5)	4.81 (1.5	.008	NA NA	NA
		IL-6, pg/L	1.02 (1.0	00-1.05) .09	1.03 (1.01-1.05) .01
		ESR, mm/h	1.01 (1.0	.19	1.01 (0.99-1.02) .32
		Serum ferritin, ng/mL (>300 vs ≤30	3.53 (1.5	.003 .003	5.28 (0.72-38.4	.10
Coagulation function						
		PT, s	1.56 (1.3	\$2-1.83) <.00	1.08 (0.84-1.38	.54
		APTT, s	0.97 (0.9	.13	0.96 (0.91-1.00) .06
		D-dimer, µg/mL	1.03 (1.0	(1-1.04) <.00	1.02 (1.01-1.04	.002

JAMA Intern Med. Published online March 13, 2020. doi:10.1001/jamainternmed.2020.0994

Risk factors for more severe disease

- Older age
- Comorbidities
 - Diabetes
 - Hypertension
 - Chronic kidney disease
 - Chronic lung disease
 - Chronic liver disease
- Reduced immunity

Case fatality rate

- China: 2.3%
- Korea: 1.0%
- Italy: 7.2%
 - Older demographic (23% > 65) and 37.6% of cases in Italy were in people > 70
 - Italian CFR uses death from any cause, not limited to "COVID-19-related deaths"
 - Stringent testing policy (only hospitalized, high risk patients), may have decreased denominator and therefore increased CFR

Age, y	Deaths, No. (% of total)	Case-fatality rate, %	Cases by region/province of dia
0-9	0	0	
10-19	0	0	
20-29	0	0	
30-39	4 (0.25)	0.3	■ 501- ■ 100
40-49	10 (0.62)	0.4	20
50-59	43 (2.65)	1.0	Store ?
60-69	139 (8.55)	3.5	Sold Sold
70-79	578 (35.57)	12.5	2 2 2 2 2 2
80-89	694 (42.71)	19.7	W Th
≥90	156 (9.6)	22.7	12 h
Not reported	1 (0.06)	0.6	and
Total	1625 (100)	7.2	~3

Authors: Edward Livingston, MD; Karen Bucher, MA, CMI Sources: Adapted from the COVID-19 Task Force of the Department of Infectious Diseases and the IT Service Instituto Superiore di Sanità. https://www.iss.it/infografiche Please cite as: JAMA. Published online March 17, 2020. doi:10.1001/jama.2020.4344

How to diagnose?

Diagnosis

- Nasopharyngeal swab
- Lower respiratory secretions
- Bronchoalveolar lavage fluid **J**
- Also found in sputum and stool
- Serology (IgG, IgM)

Radiographic (CXR or CT scan)

Not recommended unless no other option due to high risk of infection

Rapid, point-of-care

To confirm presence and extent of pneumonia rather than etiologic diagnosis

- New assays being developed
- Antigen detection

Real time RT-PCR

Detection in different types of clinical specimens

Table Detection Decults of Clinical Creating on by Deal Time Devenue Transmisters. Delymetres Chain Desetion

Table. Detection Results of Clinical Specimens by Real-Time Reverse Transcriptase-Polymerase Chain Reaction								
Specimens and values	Bronchoalveolar lavage fluid (n = 15)	Fibrobronchoscope brush biopsy (n = 13)	Sputum (n = 104)	Nasal swabs (n = 8)	Pharyngeal swabs (n = 398)	Feces (n = 153)	Blood (n = 307)	Urine (n = 72)
Positive test result, No. (%)	14 (93)	6 (46)	75 (72)	5 (63)	126 (32)	44 (29)	3 (1)	0
Cycle threshold, mean (SD)	31.1 (3.0)	33.8 (3.9)	31.1 (5.2)	24.3 (8.6)	32.1 (4.2)	31.4 (5.1)	34.6 (0.7)	ND
Range	26.4-36.2	26.9-36.8	18.4-38.8	16.9-38.4	20.8-38.6	22.3-38.4	34.1-35.4	
95% CI	28.9-33.2	29.8-37.9	29.3-33.0	13.7-35.0	31.2-33.1	29.4-33.5	0.0-36.4	

Abbreviation: ND, no data.

Viral load in upper and lower respiratory specimen

L Zou et al. N Engl J Med 2020;382:1177-1179.

How to treat?

Treatment principles

- On 30 March 2020, FDA issued an EUA (Emergency Use Authorization) to allow chloroquine and hydroxychloroquine for treatment of certain patients with COVID-19 infection. This does not include prophylaxis.
- Treatment is otherwise largely supportive

Caring for critically ill patients with COVID-19 is based on the usual management of viral pneumonia with respiratory failure with additional precautions to reduce risk of transmission.

Usual critical care

Many patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS). Evidence-based guidelines for ARDS in the context of COVID-19 include treatments such as

 Conservative intravenous fluid strategies
 Empirical early antibiotics for possible bacterial pneumonia
 Consideration for early invasive ventilation Lung-protective ventilation strategies
 Periodic prone positioning during mechanical ventilation
 Consideration of extracorporeal membrane oxygenation

Modifications to usual critical care

Admission of patients with suspected disease to private rooms when possible

Use of medical face masks for symptomatic patients during assessment and transfer

Maintain distancing of at least 2 m between patients

Caution when using high-flow nasal oxygen or noninvasive ventilation due to risk of dispersion of aerosolized virus in the health care environment with poorly fitting masks

 Clinicians involved with aerosol-generating procedures should use additional airborne precautions including N95 respirators and eye protection

Facility planning

 Ensure staff have updated training in infection prevention and control including personal protective equipment

 Planning at local and regional levels for a potential surge in the need for critical care resources

COVID-19-specific considerations

Antiviral or immunomodulatory therapies are not yet proven effective for treatment of COVID-19. Patients should be asked to participate in clinical trials of supportive or targeted therapies.

First do no harm: what DOES NOT work

Subscribe Official You Tube Channel of Peer Pinjar Sarkar

Corona virus before it reaches the lungs it remains in the throat for four days and at this time the person begins to cough and have throat pains. If he drinks water a lot and gargling with warm water & salt or vinegar eliminates the virus. Spread this information because you can save someone with this information

Potential treatment regimens

Possible role	No role (excent specific other need)
	ne reie (except speeme other need)
 Chloroquine/azithromycin 	Steroids
 Convalescent plasma/serum 	ACE-inhibitors
• Remdesivir	• Oseltamivir
 IL-6 receptor blockers (e.g. tocilizumab) 	
	Unsure
	• Lopinavir/ritonavir
	 Interferon/ribavirin
	NSAIDS
	• Vitamin C

Hydroxychloroquine + azithromycin

- Only 20 subjects in the active treatment arm
- No control group
- Varying disease severity

Int J Antimicrobial Agents. Available online 20 March 2020, 105949 doi.org/10.1016/j.ijantimicag.2020.105949

Hydroxychloroquine + azithromycin

Study Design

URTI URTI LRTI

HCQ 200 mg TID x 10 d Azithro 500mg x 1; then 250 QD x 4 d Aggressive course (O2 requirement; ICU admission) Contagiousness (PCR<34; culture negative) LOS in ID ward

Clinical Classification		
Asymptomatic	5.0%	
URTI	41.2%	
LRTI	53.8%	
Severity (based on NEWS score)	At admission	At discharge
Low	92.0%	93.8%
Medium	5.3%	6.2%
High	2.7%	-
Pneumonia on CT		
Not done	20.0%	
No pneumonia	26.2%	
Pneumonia present	53.8%	

Gautret et al. Pre-publication non-peer reviewed draft

Concerns

- No control group
- Varying severity of disease
- Other treatments unclear
- No change in disease severity
- Even patients with pneumonia may have had mild disease
- Decreasing numbers tested from day 3 onwards

Remdesivir, chloroquine, hydroxychloroquine

(c) Prophylactic treatment

Benefit observed *in vitro*Increased inhibition of virus

Cell Res. 2020 Mar; 30(3): 269–271. Clinical Infectious Diseases, ciaa237, https://doi.org/10.1093/cid/ciaa237 Adeel A. Butt, MD, MS, FACP, FIDSA

Lopinavir/ritonavir

Time to Clinical Improvement in the Intention-to-Treat Population

- Large enough study
- No benefit of Lopinavir/ritonavir observed

B Cao et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2001282

Lopinavir/ritonavir

Mean Change from Baseline in Viral RNA Load by qPCR on Throat Swabs.

- Large enough study
- No benefit of Lopinavir/ritonavir observed

B Cao et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2001282

Convalescent serum

- Only 5 subjects; No control group
- Also received other treatments (antivirals)
- Plasma transfusion done 10-22 after admission

Shen et al. JAMA. Published online March 27, 2020. doi:10.1001/jama.2020.4783

Tocilizumab

Treatment for severe ARDS

Therapy	Implementation
High-flow nasal oxygen	Might prevent or delay the need for intubation
Tidal volume	Use 6 mL/kg per predicted bodyweight (can reduce to 4 mL/kg per predicted bodyweight)
Plateau airway pressure	Maintain at <30 cm H ₂ 0 if possible
Positive end-expiratory pressure	Consider moderate to high levels if needed
Recruitment manoeuvres	Little value
Neuromuscular blockade	For ventilator dyssynchrony, increased airway pressure, hypoxaemia
Prone positioning	For worsening hypoxaemia, PaO ₂ :FiO ₂ <100–150 mm Hg
Inhaled NO	Use 5–20 ppm
Fluid management	Aim for negative fluid balance of 0.5-1.0 L per day
Renal replacement therapy	For oliguric renal failure, acid-base management, negative fluid balance
Antibiotics	For secondary bacterial infections
Glucocorticoids	Not recommended
Extracorporeal membrane oxygenation	Use EOLIA trial criteria ³

Lancet. Published:March 20, 2020DOI:<u>https://doi.org/10.1016/S2213-2600(20)30127-2</u>

Triage algorithm (one of many such available)

How to prevent?

Save the world

Prevent yourself from getting infected Prevent transmitting it to others

Break the cycle of transmission

Management of contacts

- Medical evaluation
- If contact with a confirmed case, then test and isolate
 - Distance <6 feet (some say 4 feet) for >15 minutes (some say 30 minutes)
- Further management based on meeting case definition and symptoms
- Contact of an asymptomatic contact
 - General preventive measures only
 - Strict quarantine not indicated
 - Stay at home, social distancing, hygienic principles

At the workplace (other than healthcare facilities)

- Work from home wherever and whenever possible
- Audio or videoconferencing for meetings
- Do not gather in large numbers
- No handshakes
- Close or avoid common areas (water cooler, cafeteria, etc.)
- Frequent hand hygiene
- Frequent and meticulous cleaning of common areas and surfaces

Summary

- Pandemic is on the upswing in most areas of the world
- However, good news is that China managed to stem it relatively quickly
- Public health measures do work
- Public has to take responsibility
- Governments must provide unified and clear advice and enforce public health measures

INNOVATIONS IN HEALTHCARE ADVOCACY, RESEARCH AND TRAINING

Reimagining Healthcare

1300 Pennsylvania Ave. NW, Suite 190-635, Washington DC 20004

E-mail: <u>info@ihartglobal.org</u>; Tel: +1 (202) 800 9099

www.ihartglobal.org